

INDIAN INSTITUTE OF MANAGEMENT KOZHIKODE

Working Paper

MARCH 2019

ANOVA with two timescale stochastic approximation for estimating Variance of Conditional Expectation

Mohammed Shahid Abdulla ${ }^{1}$
L Ramprasath ${ }^{2}$

[^0]
ANOVA with two timescale stochastic approximation for estimating Variance of Conditional Expectation

Mohammed Shahid Abdulla ${ }^{\dagger}$ \& L Ramprasath*
\dagger IT and Systems Area, IIM Kozhikode
* Finance, Accounting and Control Area, IIM Kozhikode

Abstract

The ANOVA method is of value to detect if a population, consisting of labelled sub-populations, has any statistically significant support for considering such labels as valid. In classical ANOVA, the effect of a variable in each sub-population is treated as a Conditional Expectation (CE), and the variance of such CE among the sub-populations has a bearing on whether the null hypothesis can be rejected or not. ANOVA formulae can therefore be used to estimate the Variance of CE (Var-of-CE) itself, and a fairly recent publication has proposed a method wherein a fixed number of samples in each sub-population is used to estimate Var-of-CE. This method assumes repeated sampling of both sub-populations and samples within them, and have designed provably unbiased estimators of Var-of-CE, with one of these being approximately minimum variance under some conditions. Combined with another more recent method, such methods have disadvantages, such as requiring a pilot simulation, or suffering an empirically-observed Root Mean Squared Error (RMSE) that is unfavourable. The work explained here proposes an ANOVA estimator for Var-of-CE that requires an increasing number of samples from each subpopulation. Yet, the estimator reduces the empirically-observed MSE in Var-of-CE estimate in 3 benchmark experiments from the literature.

I. Introduction

The Analysis of Variance (ANOVA) technique is used extensively in statistical methods to understand whether effect τ_{k} of an alternate hypothesis has a dominating impact on error $\epsilon_{k, j}$, which is the noise in observation j that belong to a sub-population k. The samples drawn are $X_{k, j}$ where each $X_{k, j}=\mu+\tau_{k}+\epsilon_{k, j}$, in which μ is expectation of $X_{k, j}$ over all effects k (representing the outer loop of the simulation) and inner loop samples j. In particular, $\mu=\lim _{K \rightarrow \infty, n \rightarrow \infty} \frac{1}{n K} \sum_{k=1}^{K} \sum_{j=1}^{n} X_{k, j}$. Note that we have assumed n corresponding to an outer loop iteration k to be fixed, but in general it can be an integer n_{k} dependant on k. Thus K sub-populations are considered in the outer loop of the simulation, while within each sub-population k, n_{k} samples are considered in the inner loop.

The standard formulas used in ANOVA to estimate Var-of-CE, the quantity below with notation $\hat{\sigma}_{\tau}^{2}$, are written as follows:

$$
\begin{align*}
S S_{\epsilon} & =\sum_{k=1}^{K} \sum_{j=1}^{n_{k}}\left(X_{k, j}-\bar{X}_{k}\right)^{2} \text { where } \bar{X}_{k}:=\frac{1}{n_{k}} \sum_{j=1}^{n_{k}} X_{k, j} \\
S S_{\tau} & =\sum_{k=1}^{K} n_{k} \cdot\left(\bar{X}_{k}-\overline{\bar{X}}\right)^{2}, \text { where } \overline{\bar{X}}:=\frac{1}{C} \sum_{k=1}^{K} n_{k} \cdot \bar{X}_{k}, \text { and } C:=\sum_{k=1}^{K} n_{k} \\
\hat{\sigma}_{\epsilon}^{2} & =\frac{S S_{\epsilon}}{C-K} \tag{1}\\
\hat{\sigma}_{\tau}^{2} & =\frac{S S_{\tau}-(K-1) \cdot \hat{\sigma}_{\epsilon}^{2}}{C-\frac{\sum_{k=1}^{K} n_{k}^{2}}{C}} \tag{2}
\end{align*}
$$

We have used the notation in $[1,(6)-(8)]$, where a simple derivation of the above formulas is also given.
We consider situations where $K \rightarrow \infty$. Note that classical single-factor ANOVA considers finite K and $F=\frac{\left(\frac{S S T}{K-1}\right)}{\hat{\sigma}_{\epsilon}^{2}}$ is used as the F-statistic with $(K-1, C-K)$ degrees of freedom. If this $F \geq F_{\alpha}$, where α is a
statistical signficance level that depends on degrees of freedom, then the null hypothesis is rejected. Note the requirement that it is sufficient for an unbiased estimator that $1 . K \rightarrow \infty$ as $C \rightarrow \infty$-so that estimator $\hat{\sigma}_{\tau}^{2}$ has lower variance - and 2 . as $K \rightarrow \infty$ (therefore $k \rightarrow \infty$ also), we require $n_{k} \rightarrow \infty$ to result in lower bias. This implies that a static sampling budget C, which assures nearly unbiased and minimal-variance behaviour, could be such that $K \gg 0$ and $n_{k}=N \gg 0$. We utilise this scheme to structure $K,\left\{n_{k}\right\}_{k=1}^{K}$ to satisfy the above conditions such that $1 . \sum_{k=1}^{K} n_{k}<=C$ while $\sum_{k=1}^{K+1} n_{k}<=C$, and $2 . n_{k}=k^{\alpha}, \alpha>0$, respectively. The value of α will be further filtered to also satisfy the conditions of two-timescale stochastic approximation.

A. Survey of Literature

Recent work [1] has proposed a one-and-half level nested simulation where a pilot experiment, costing about 20% of sampling budget C, calculates an approximation to the optimal n^{*}, with $n_{k}=n^{*}$ for all k. Here n^{*} is inner loop size that results in a minimum-variance Var-of-CE estimator $\hat{\sigma}_{M}^{2}$, under the conditions that i. $n_{k}=n$, i.e. n_{k} is a fixed integer n for all $k \leq K$, such that ii. number of subpopulations $K \rightarrow \infty$. More recently, [2], proposed an easier estimator that required only a one level simulation such that $n_{k}=2$, $\forall k \leq K$. The advantage with the algorithm in [2] is that it doesn't require a pilot simulation unlike [1]. After establishing that the algorithm is unbiased, [2] test their work on 3 experiments where closed-form value of σ_{τ}^{2} is known and thus a diminishing root mean square error (RMSE) is observed against sampling budget C. In contrast, [1] use a Delta Hedging example from finance where variance of estimator $\hat{\sigma}_{\tau}^{2}$ in different experiments is recorded, to indicate a low variance when $n_{k}=n^{*}$, and higher variances when $n_{k}=n \neq n^{*}$, for different C. Notice that RMSE in $[1,(10)]$ is $O\left(\frac{1}{\sqrt{C}}\right)$ asymptotically despite $n_{k}=n^{*}$, i.e. samples drawn from sub-populations k being bounded in number. Notice also that this claim holds true for ANOVA-based Var-of-CE estimator (1)-(2) above.

Note that rate of convergence being $O\left(\frac{1}{\sqrt{C}}\right)$ would also depend on the method of apportioning K and n_{k}. For example, one such scheme could be $K=\sqrt{C}$, while $n_{k}=n$, with $n=\sqrt{C}$. Such a scheme of apportioning, since $n_{k}=n, \forall k$, would nevertheless have the desirable property of RMSE converging at rate $O\left(\frac{1}{\sqrt{C}}\right)$. Also note in this scheme that as $C \rightarrow \infty$, we have $K \rightarrow \infty$ and $n \rightarrow \infty$, for better properties of the ANOVA Var-of-CE estimator. However, since $n_{k}, \forall k$, must be calculated upfront, the sampling budget C must also be declared apriori and is therefore not sequential in nature. Separately, experimental performance indicates $O\left(\frac{1}{\sqrt{C}}\right)$ or better RMSE convergence for ANOVA and 2TS-ANOVA, since these have a lower RMSE than the estimator in [2], as seen below in the results section.

II. Proposed Algorithm: 2TS-ANOVA

The proposed algorithm in this work is to calculate an additional term $\tilde{\bar{X}}_{k}$ which is a critic, updated over n_{k} samples, for an imaginary actor recursion. The actor role is also played by \tilde{X}_{k}, with the constraint that its value is evaluated only at the k-th outer loop instance. The requirement in 2 TS algorithms is that changes in actor parameter converge to 0 as $k \rightarrow \infty$, note that $\tilde{\tilde{X}}_{k} \rightarrow \overline{\bar{X}}$ as $k \rightarrow \infty$ irrespective of any structure on n_{k}. Therefore the claim is that $\tilde{\bar{X}}_{k}$ converges to $\overline{\bar{X}}$ at the rate $\frac{1}{k}$ and a critic recursion may be designed around this. This critic recursion would also be the calculation of \tilde{X}_{k}, however at a more granular number of samples, $N_{k}=\sum_{s=1}^{k} n_{s}$, with n_{s} suitably chosen.

The principles of two-timescale actor-critic stochastic approximation algorithms were first proposed in [3]. Note that in [3], it is required to have separating updating stepsizes for both actor and critic algorithms. The specific variant of two-timescale algorithm used here is referred to as a Type-1 algorithm described in [4]. To give an illustration of what an updating stepsize is, assume that $n_{k}=n, \forall k$, and note the recursion $\overline{\bar{X}}_{k}:=\overline{\bar{X}}_{k-1}+\frac{1}{k} \cdot\left(\bar{X}_{k}-\overline{\bar{X}}_{k-1}\right)$ for $\bar{X}_{k} \rightarrow \overline{\bar{X}}$ used above. In this illustration, $\frac{1}{k}$ is the updating stepsize and also suits the context where $\overline{\bar{X}}$ is calculated as an average of \bar{X}_{k}.

The formulas used in 2TS-ANOVA are proposed as follows:

$$
\begin{aligned}
\tilde{S S} S_{\epsilon} & =\sum_{k=1}^{K} \sum_{j=1}^{n_{k}}\left(X_{k, j}-\tilde{\bar{X}}_{k}\right)^{2}, \text { where } \tilde{\bar{X}}_{k}:=\frac{1}{N_{k}} \sum_{m=1}^{k} n_{m} \cdot \bar{X}_{m}, \text { and } N_{k}:=\sum_{m=1}^{k} n_{m} \\
\tilde{S S_{\tau}} & =\sum_{k=1}^{K} n_{k} \cdot\left(\bar{X}_{k}-\tilde{\bar{X}}_{k}\right)^{2} \\
\binom{\hat{\sigma}_{\tau}^{2}}{\hat{\sigma}_{\epsilon}^{2}} & =\left(\begin{array}{cc}
\sum_{k=1}^{K} n_{k} \cdot \frac{\sum_{m=1}^{k-1} n_{m}^{2}+\left(N_{k}-n_{k}\right)^{2}}{N_{k}^{2}} & \sum_{k=1}^{K}\left(1-\frac{n_{k}}{N_{k}}\right)^{2}+\frac{n_{k} \cdot N_{k-1}}{N_{k}^{2}} \\
\sum_{k=1}^{K} n_{k} \cdot \frac{\sum_{m=1}^{k-1} n_{m}^{2}+\left(N_{k}-n_{k}\right)^{2}}{N_{k}^{2}} & \sum_{k=1}^{K} n_{k} \cdot \frac{N_{k}\left(N_{k}-1\right)^{2}}{N_{k}^{2}} .
\end{array}\right)^{-1} \cdot\binom{\tilde{S S} S_{\tau}}{\tilde{S S} S_{\epsilon}}
\end{aligned}
$$

The method of calculating coefficients is similar to the treatment in $[1,(6)-(8)]$.

We denote these calculations below:

$$
\begin{aligned}
& \tilde{S S_{\epsilon}}=\sum_{k=1}^{K} \sum_{j=1}^{n_{k}}\left(X_{k, j}-\frac{1}{N_{k}} \sum_{s=1}^{N_{k}} X_{s_{1}, s_{2}}\right)^{2}, \\
& =\sum_{k=1}^{K} \sum_{j=1}^{n_{k}}\left(\mu+\tau_{k}+\epsilon_{k, j}-\frac{1}{N_{k}} \sum_{s=1}^{N_{k}}\left(\mu+\tau_{s_{1}}+\epsilon_{\mathcal{S}_{1}, s_{2}}\right)\right)^{2}, \\
& =\sum_{k=1}^{K} \sum_{j=1}^{n_{k}}\left(\tau_{k}+\epsilon_{k, j}-\frac{1}{N_{k}} \sum_{s=1}^{N_{k}}\left(\tau_{s_{1}}+\epsilon_{s_{1}, s_{2}}\right)\right)^{2}, \\
& =\sum_{k=1}^{K} \sum_{j=1}^{n_{k}}\left(\tau_{k}-\frac{1}{N_{k}} \sum_{s=1}^{k} n_{s} \tau_{s}+\epsilon_{k, j}-\frac{1}{N_{k}} \sum_{s=1}^{N_{k}} \epsilon_{s_{1}, s_{2}}\right)^{2}, \\
& E\left(\tilde{S S_{\epsilon}}\right)=\sum_{k=1}^{K} \sum_{j=1}^{n_{k}} E\left(\tau_{k}-\frac{1}{N_{k}} \sum_{s=1}^{k} n_{s} \tau_{s}\right)^{2}+E\left(\epsilon_{k, j}-\frac{1}{N_{k}} \sum_{s=1}^{N_{k}} \epsilon_{s_{1}, s_{2}}\right)^{2} \\
& =\sum_{k=1}^{K} \sum_{j=1}^{n_{k}}\left(\left(1-\frac{n_{k}}{N_{k}}\right) \tau_{k}-\frac{1}{N_{k}} \sum_{s=1}^{k-1} n_{s} \tau_{s}\right)^{2}+\left(\left(1-\frac{1}{N_{k}}\right) \epsilon_{k, j}-\frac{1}{N_{k}} \sum_{s=1,\left(s_{1}, s_{2}\right) \neq(k, j)}^{N_{k}} \epsilon_{s_{1}, s_{2}}\right)^{2} \\
& =\sum_{k=1}^{K} \sum_{j=1}^{n_{k}}\left(\left(1-\frac{n_{k}}{N_{k}}\right)^{2}-\frac{1}{N_{k}^{2}} \sum_{s=1}^{k-1} n_{s}^{2}\right) \sigma_{M}^{2}+\left(\left(1-\frac{1}{N_{k}}\right)^{2}+\frac{1}{N_{k}^{2}}\left(N_{k}-1\right)\right) \sigma_{\epsilon}^{2} \\
& =\sum_{k=1}^{K} \sum_{j=1}^{n_{k}} \frac{\sum_{s=1}^{k-1} n_{s}^{2}+\left(N_{k}-n_{k}\right)^{2}}{N_{k}^{2}} \sigma_{M}^{2}+\sum_{k=1}^{K} \sum_{j=1}^{n_{k}} \frac{\left(N_{k}-1\right)^{2}+\left(N_{k}-1\right)}{N_{k}^{2}} \sigma_{\epsilon}^{2} \\
& =\sum_{k=1}^{K} n_{k} \frac{\sum_{s=1}^{k-1} n_{s}^{2}+\left(N_{k}-n_{k}\right)^{2}}{N_{k}^{2}} \sigma_{M}^{2}+\sum_{k=1}^{K} n_{k} \frac{N_{k}\left(N_{k}-1\right)}{N_{k}^{2}} \sigma_{\epsilon}^{2} \\
& \tilde{S S_{\tau}}=\sum_{k=1}^{K} n_{k}\left(\bar{X}_{k}-\tilde{X}_{k}\right)^{2}, \\
& =\sum_{k=1}^{K} n_{k}\left(\frac{1}{n_{k}} \sum_{j=1}^{n_{k}} X_{k, j}-\frac{1}{N_{k}} \sum_{j=1}^{N_{k}} X_{j_{1}, j_{2}}\right)^{2}, \\
& E\left(\tilde{S S}{ }_{\tau}\right)=\sum_{k=1}^{K} n_{k} \cdot E\left(\left(\tau_{k}-\frac{1}{N_{k}} \sum_{j=1}^{k} n_{j} \tau_{j}\right)+\left(\bar{\epsilon}_{k}-\frac{1}{N_{k}} \sum_{j=1}^{k} n_{j} \bar{\epsilon}_{j}\right)\right)^{2}, \\
& =\sum_{k=1}^{K} n_{k} \cdot\left(\left(\left(1-\frac{n_{k}}{N_{k}}\right)^{2}+\frac{1}{N_{k}^{2}} \sum_{j=1}^{k-1} n_{j}^{2}\right) \cdot \sigma_{M}^{2}+\left(\left(1-\frac{n_{k}}{N_{k}}\right)^{2} \frac{1}{n_{k}}+\frac{1}{N_{k}^{2}} \sum_{j=1}^{k-1} n_{j}\right) \cdot \sigma_{\epsilon}^{2}\right) \text {, } \\
& =\sum_{k=1}^{K} n_{k} \cdot\left(\left(1-\frac{n_{k}}{N_{k}}\right)^{2}+\frac{1}{N_{k}^{2}} \sum_{j=1}^{k-1} n_{j}^{2}\right) \cdot \sigma_{M}^{2}+\sum_{k=1}^{K} n_{k} \cdot\left(\left(1-\frac{n_{k}}{N_{k}}\right)^{2} \frac{1}{n_{k}}+\frac{1}{N_{k}^{2}} \sum_{j=1}^{k-1} n_{j}\right) \cdot \sigma_{\epsilon}^{2} \text {, } \\
& =\sum_{k=1}^{K} n_{k} \cdot \frac{\left(\left(N_{k}-n_{k}\right)^{2}+\sum_{j=1}^{k-1} n_{j}^{2}\right)}{N_{k}^{2}} \cdot \sigma_{M}^{2}+\sum_{k=1}^{K}\left(\left(1-\frac{n_{k}}{N_{k}}\right)^{2}+\frac{n_{k} \cdot N_{k-1}}{N_{k}^{2}}\right) \cdot \sigma_{\epsilon}^{2} .
\end{aligned}
$$

The method of calculating coefficients is similar to the treatment in [1, (6)-(8)].
III. Results

Consider Experiment 3 of [2] as the first example, and $n_{k}=\left\lceil k^{0.51}\right\rceil$, where 0.51 is used such that $n_{k} \rightarrow \infty$ as $k \rightarrow \infty$ (a requirement in [3]). The outcome in Experiments 1-2 of [2] also indicate advantage for the

2TS-ANOVA algorithm, with performance of algorithm in [2] in Experiment 3 also plotted for reference below. The second graph below is to compare the variance of ANOVA and ANOVA-2TS in the Delta Hedging setting of [1]. The measured variance is equivalent for lower sampling budgets - with a slight edge for ANOVA-2TS - but becomes indistinguishable later.

We describe the 3 experiments from [2] as follows: in the first experiment, a random variable Y_{k} is sampled from the distribution $\beta(4,4)$, then samples $\left\{X_{k, j}\right\}_{j=1}^{n_{k}}$ are sampled from $N\left(Y_{k}, \sqrt{0.5}\right)$. Note that for the method of [2], $n_{k}=2, \forall k$. For the second experiment, Y_{k} is sampled as in the first experiment, but samples $\left\{X_{k, j}\right\}_{j=1}^{n_{k}}$ are drawn from $N\left(Y_{k}, Y_{k}\right)$. In the third example, the inner-loop samples $\left\{X_{k, j}\right\}_{j=1}^{n_{k}}$ are drawn from exponential distribution as $\operatorname{EXP}\left(\frac{1}{Y_{k}+1}\right)$. Experimental results of all 3 experiments are included here, over 10000 simulations each, and are compared with [2] algorithm.

Fig. 1. Performance of ANOVA Vs 2TS-ANOVA in Example 3 of [2] and [1]

Fig. 2. Performance of ANOVA Vs 2TS-ANOVA in Examples 1 and 2 of [2]

References

[1] Y. Sun, D. W. Apley, and J. Staum, "Efficient nested simulation for estimating the variance of a conditional expectation," Operations Research, vol. 59, no. 4, pp. 998-1007, 2011.
[2] T. Goda, "Computing the variance of a conditional expectation via non-nested monte carlo," Operations Research Letters, vol. 45, pp. 63-67, 2017.
[3] V. S. Borkar, "Stochastic approximation with two time scales," Systems and Control Letters, vol. 29, no. 5, pp. 291-294, 1997.
[4] S. Bhatnagar, M. C. Fu, S. I. Marcus, and I.-J. Wang, "Two-timescale simultaneous perturbation stochastic approximation using deterministic perturbation sequences," ACM Transactions on Modeling and Computer Simulation, vol. 13, no. 2, pp. 180-209, 2003.

Research Office

Indian Institute of Management Kozhikode
IIMK Campus P. O.,
Kozhikode, Kerala, India,
PIN - 673570
Phone: +91-495-2809237/ 238
Email: research@iimk.ac.in
Web: https://iimk.ac.in/faculty/publicationmenu.php

[^0]: ${ }^{1}$ Associate Professor, Information Technology and Systems, Indian Institute of Management, Kozhikode, IIMK Campus PO, Kunnamangalam, Kozhikode, Kerala 673570, India; Email: shahid@iimk.ac.in, Phone Number (+91) 495-2809254
 ${ }^{2}$ Associate Professor, Finance, Accounting and Control , Indian Institute of Management,
 Kozhikode, IIMK Campus PO, Kunnamangalam, Kozhikode, Kerala 673570, India; Email: lrprasath@iimk.ac.in, Phone Number (+91) 495-2809248

